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Abstract

Investments and Risk Transfers

We demonstrate a novel link between relationship-specific investments and risk
in a setting where division managers operate under moral hazard and collaborate on
joint projects. Specific investments increase efficiency at the margin. This expands the
scale of operations and thereby adds to the compensation risk borne by the managers.
Accounting for this investment/risk link overturns key findings from prior incomplete
contracting studies. We find that, if the investing manager has full bargaining power
vis-a-vis the other manager, he will underinvest relative to the benchmark of con-
tractible investments; with equal bargaining power, however, he may overinvest. The
reason is that the investing manager internalizes only his own share of the investment-
induced risk premium (we label this a “risk transfer”), whereas the principal inter-
nalizes both managers’ incremental risk premia. We show that high pay-performance
sensitivity (PPS) reduces the managers’ incentives to invest in relationship-specific
assets. The optimal PPS thus trades off investment and effort incentives.

Keywords: incomplete contracting, hold-up, risk externalities, overinvestment, pay
performance sensitivity (PPS)



1 Introduction

The joint provision of effort or financial resources is a central feature of modern

firms. Yet, such arrangements are prone to externality problems such as free-

riding or hold-up (Holmstrom 1982, Williamson 1985). In fact, a key tenet of the

incomplete contracting literature is that individual agents underinvest in joint

projects unless they expect to fully extract the cash returns ex post, i.e., have

complete bargaining power.1 The issue of risk associated with joint projects

is typically not addressed. Yet, underlying the incomplete contracting frame-

work is the notion of state uncertainty, which one would expect to translate into

compensation risk. We show that formally modeling the risk consequences of

relationship-specific investments overturns several key results from earlier stud-

ies. For instance, a division manager who has full bargaining power vis-a-vis his

counterpart always underinvests, whereas, paradoxically, he may over invest if he

expects to split the surplus.

The driving force behind these findings is that efficiency-enhancing invest-

ments in joint projects increase managers’ compensation risk.2 Consider the

canonical surplus splitting model in which divisions A and B trade widgets made

by A at unit cost of $c and sold by B to external customers, where c is a random

variable realized just before production. At the outset, A can install a more effi-

cient machine at some fixed cost that shifts the distribution over c to the left and

thereby raises the ex-post efficient trading volume, pointwise. Ex ante, however,

each unit to be traded is subject to the cost shock embedded in c. Hence, greater

upfront investment not only increases the expected value but also the variance

of the surplus, which in turn tends to translate into additional variance in man-

1See Williamson (1985). A stream of the incomplete contracting literature has studied ways
of augmenting the bargaining process to overcome the hold-up problem; e.g., Chung (1991),
Rogerson (1992), Edlin and Reichelstein (1995).

2We only consider investments in assets that enhance the efficiency of operations, and
thereby add to the scale of the latter and ultimately, as we show, to overall risk. Other
investments, such as hedging, are specifically designed to reduce risk. We ignore those here.
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agers’ compensation.3 Moreover, a manager who expects to split the surplus

externalizes not only a share of the cash returns (the standard hold-up prob-

lem), muting his investment incentives, but also a share of the incremental risk

premium, boosting his investment incentives. We label this effect a risk transfer.

It raises the possibility of overinvestment under incomplete contracts.

We study the investment/risk link and its implications for contract design

and investment distortions in a setting in which a principal contracts with two

divisional managers who collaborate on a joint project. The value of the project

can be enhanced by an upfront specific investment. We first consider general

(nonlinear) but exogenous compensation schemes. In the benchmark setting of

contractible investments, when choosing the investment, the principal internalizes

all cash flows and reimburses both managers for their risk premia. In contrast, a

manager who has been delegated investment authority and who has full bargain-

ing power ex-post vis-a-vis his counterpart internalizes the entire incremental risk

premium directly, whereas cash flows—the investment-related fixed cost and con-

tribution margin—accrue in his divisional income measure and thus flow through

the compensation scheme. Unless the manager at the margin pockets each dollar

of divisional income as compensation (i.e., he is residual claimant at the margin

vis-a-vis the other manager and vis-a-vis the principal), he will overweight the

risk premium and hence underinvest.

As bargaining power becomes more evenly distributed, one would expect

the hold-up effect to compound the underinvestment problem. Yet, the risk

transfer effect constitutes a countervailing force. To study the ensuing tradeoff,

we turn to linear contracts and equal-split bargaining between the managers,

which also allows us to derive the optimal pay-performance sensitivity (PPS). We

3As we show in Lemma 1, this argument holds for linear, and a fortiori also for convex
compensation schemes. For concave contracts, investments that add to the first and second
moments of the outcome distribution have an ambiguous effect on the risk premium: the
outcome distribution, while more dispersed, now falls into a flatter region of the contract.

2



derive sufficient conditions for either of the countervailing externalities—hold-up

or risk transfer—to dominate, thereby predicting the direction of the investment

distortion. Underinvestment results if the project uncertainty is small or the non-

investing manager faces volatile general operations, muting his PPS. Both forces

dampen the risk transfer effect. The earlier hold-up studies that have ignored

project-related compensation risk thus emerge as a limit case of our model.

On the other hand, overinvestment results if the benefits from the joint project

are highly uncertain and the investing manager faces a more volatile operat-

ing environment than his non-investing counterpart. Together these two forces

magnify the risk transfer effect: the project risk is high, and the non-investing

manager internalizes a large share of the associated risk premium because of his

relatively high PPS. The possibility of overinvestment illustrates the importance

of recognizing the investment/risk link.

The investment/risk link has implications for contract design. Managers op-

erating under high-powered incentives are reluctant to invest, all else equal, be-

cause they are more sensitive to the incremental variance in divisional income.

Therefore, managers facing similar divisional agency problems but divergent in-

vestment opportunities should receive different incentive contracts, because the

PPS now serves as an instrument to fine-tune delegated investment decisions.

A principal primarily concerned with a prevailing underinvestment problem

(due to hold-up) can lower the investing manager’s PPS to stimulate investment.

However, the PPS reduction required to induce the benchmark investment level

would impose too high an opportunity cost in terms of foregone effort; hence,

some degree of underinvestment remains in equilibrium. As a consequence, the

non-investing manager’s PPS exceeds that in the contractible benchmark setting

because less investment reduces the marginal risk premium. For the investing

manager, this risk effect has to be traded against the investment-inducing effect of

low PPS. If the operating volatility faced by the investing manager is sufficiently
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high, the investment inducement effect dominates, resulting in muted incentives.

Converse arguments apply if risk transfer is the dominant friction, resulting in

overinvestment.

In sum, accounting for the risk consequences of value-enhancing investments

overturns several earlier results. A manager with full bargaining power vis-a-vis

his counterpart underinvests in specific assets; yet, equal-split bargaining may

result in overinvestment. Hence, investment distortions arising from incomplete

contracting can be non-monotonic in the allocation of bargaining power. More-

over, the optimal PPS balances effort and investment incentives as high-powered

incentives tend to suppress investments. Thus, the equilibrium association be-

tween distortions in investments and PPS is always negative for managers with-

out investment opportunities, but it may take either sign for managers with

investment opportunities. That is, investment opportunities at the divisional

level are an omitted correlated variable when relating risk measures to PPS.

Earlier papers studying specific investments jointly with divisional moral haz-

ard problems are Holmstrom and Tirole (1991) and Anctil and Dutta (1999).

Both papers highlight the investment-enhancing role of profit sharing. Absent

profit sharing, they predict separation of PPS and investment incentives in that

(a) delegated investments are independent of the PPS and, conversely, (b) man-

agers facing similar divisional agency problems receive the same PPS regardless

of their respective investment opportunities, because the investment is paid for

with divisional funds and is not personally costly. This implicit dichotomy of

“vertical” agency problems between principals and managers—addressed by the

PPS—and “horizontal” coordination among managers—addressed by transfer

pricing mechanisms—assumes away the investment/risk link. By showing that

investments are decreasing in the PPS, our results establish a link between in-

centive pay and investments, even absent profit sharing. This illustrates the

importance of modeling residual cash flow claims comprehensively by incorpo-
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rating principal-agent incentive contracting and inter-agent surplus-splitting.

Williamson (1985) has observed that incentives in vertically integrated firms

are typically low-powered, in part to prevent managers from misallocating their

efforts across various tasks. Holmstrom and Milgrom (1991) and Feltham and Xie

(1994) have formalized this argument using multitasking models in which effort

that is easily measurable, but not necessarily productive, crowds out other dimen-

sions of performance that are essential but hard to measure.4 In our model, each

task, effort and investment, in general has a positive impact on firm value and

on divisional performance measures. Yet, muting incentives below the level pre-

dicted by standard moral hazard models may be optimal because high-powered

PPS depresses managers’ investment incentives.

Several papers have augmented the moral hazard model by allowing for ac-

tions taken by an agent to affect the variance of the outcome.5 We demonstrate

that a second moment-effect arises endogenously even from actions that have tra-

ditionally been viewed as affecting only the mean of the outcome distribution,

namely investments in efficiency-enhancing fixed assets. Lastly, our findings

linking managers’ risk-taking incentives to the curvature of their compensation

contracts are related to earlier finance studies on managers’ risk-taking incentives

under option contracts.6

The article proceeds as follows. Section 2 develops the investment/risk link

in a general setup. Section 3 adds more structure to the model to facilitate a

4See also Christensen, Sabac and Tian (2010), and Heinle, Hofmann, and Kunz (2012).
5For instance, Prendergast (2002), Baker and Jorgensen (2003), Bertomeu (2008), and

Liang and Nan (2014) have studied single-agent models with effort affecting the first and
second moments of output. Ziv (2000), Liang et al. (2008), Indjejikian and Matejka (2009)
and Friedman (2013, 2014) are closer to our model in that they have considered multi-agent
models. What sets our model apart: (a) we consider a joint production technology; (b) the
second-moment effect in our model arises endogenously from efficiency-enhancing investments
that scale up the operations in line with the incomplete contracting literature. In contrast, in
the earlier papers, some effort taken by an agent directly affects the outcome variance.

6Carpenter (2000) and Ross (2004) have shown that stock options may induce less risk-
taking if risky projects move the outcome distribution towards the domain region with greater
contract slope. Armstrong et al. (2013) conduct empirical analysis along these lines.
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detailed analysis of the optional (linear) contracts. Section 4 addresses the bench-

mark model with contractible investments. Section 5 deals with non-contractible

investments. Section 6 concludes. All proofs are found in the Appendix unless

otherwise noted.

2 The Investment/Risk Link

In this section, we present a reduced-form version of the full-fledged model.

For now, we take the managers’ compensation contracts as given and suppress

divisional agency problems so as to focus on the joint project and develop the

intuition for the fundamental link between specific investments and risk.

A principal contracts with two division managers, i = A,B. Each Manager

i is compensated according to some exogenous function si(πi) based on own-

division performance, πi. We assume that the contracts are strictly increasing,

i.e., s′i(·) > 0, for any i, πi, for reasons to be made explicit in Sections 3-5. There,

we also comment on the issues of divisional performance evaluation and firm-wide

profit sharing.

The managers collaborate on a joint project that generates surplus M(θ, I),

which is increasing in some upfront investment, I ≥ 0, and in a random state

variable, θ, i.e., MI > 0, Mθ > 0. Moreover, we impose the single-crossing

condition MθI > 0, which is a standard feature of hold-up models.7 To fix ideas,

suppose the investment is efficiency-enhancing at the margin, e.g., it may lower

the variable cost per unit of the joint project, while θ is a (favorable) random

shock to the size of the market for the project. The investment I is undertaken

by Manager A at fixed cost F (I) for Division A. We consider cases where I is or

is not contractible.

After the investment is made, the managers jointly observe the realization of

7See, e.g., the value function in Pfeiffer et al. (2011) in a transfer pricing setting.
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θ but cannot communicate it to the principal.8 The managers bargain over the

surplus with the result that Manager i receives a share γiM , with γA ∈ [0, 1] and

γB = 1− γA. Realized divisional profits are

πi(θ, I) = γiM(θ, I)− 1i=AF (I), (1)

with 1i=A as the indicator function. Figure 1 depicts the sequence of events.

— INSERT FIGURE 1 HERE —

We assume throughout that the principal is risk-neutral and the managers

are risk-averse with mean-variance preferences:

EUi(I | γi) = E[si(πi(θ, I))]− ρi
2
V ar(si(πi(θ, I))), (2)

where ρi ≥ 0 is Manager i’s coefficient of risk aversion. Absent pre-contractual

private information or other frictions, the managers will earn zero rents, i.e., at

Date 1 the principal extracts the surplus net of the managers’ risk premia and

realizes an expected payoff of:

Π(I) = E [M(θ, I)]− F (I)−
∑
i=A,B

ρi
2
V ar(si(πi(θ, I))). (3)

If the investment is contractible, the principal chooses I so as to maximize Π(I),

for given si(·), i = A,B. We assume existence of a unique interior solution I∗,

termed the benchmark solution.

Earlier treatments of specific investment have centered on the first-moment

effect of investment on ex-post surplus, and on whether the investing party can

capture a sufficiently high share of the surplus. As we show now, there is also

a second-moment effect. With Mθ and MθI both positive, investment adds to

8Blocked (or imperfect) communication of realized information is a standard assumption
in the incomplete contracting literature, e.g., Melumad et al. (1992) and Prendergast (2002).
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the variance in the surplus, i.e., V ar(M(θ, I)) is increasing in I.9 How does the

incremental surplus variance translate into compensation variance? Building on

the “concavification/convexification” arguments in Carpenter (2000) and Ross

(2004), the answer depends on the shape of the compensation contracts and on

whether investment shifts the distribution over divisional performance measures

to the left or the right.10 Given ∂πi(θ, I)/∂I = γiMI(θ, I)− 1i=AF ′(I), for any i

and θ, we find:

Lemma 1 For any given compensation contracts, si(·) and any i = A,B, the

variance of compensation, V ar(si(πi(·))), is increasing in I at some arbitrary

value I = x, if any of the following conditions are met:

(i) s′′i (·) > 0, for any πi, and ∂πi(θ,I)
∂I

∣∣∣
I=x
≥ 0, for any θ; or

(ii) s′′i (·) < 0, for any πi, and ∂πi(θ,I)
∂I

∣∣∣
I=x
≤ 0, for any θ; or

(iii) |s′′i (·)| < δ, for any πi and for some δ positive but sufficiently small.

We illustrate Lemma 1(i), in Figure 2. The distribution over Division i’s

performance measure for a high investment level, Io, is shifted to the right and

has greater dispersion, as compared with a lower investment, Io. This translates

into higher compensation risk if the contract is convex, as in panel (a). For

concave contracts, panel (b), the variance effect may outweigh the first-moment

effect. The distribution over πi(·) conditional on Io falls into a flatter region of

the contract, potentially reducing the compensation risk to which Manager i is

9Specifically, V ar(M(θ, I)) = E[(M(θ, I))2]− (E[M(θ, I)])2 and hence ∂V ar(M(·))/∂I =
E[2M(·) ·MI(·)]− 2E[M(·)]E[MI(·)] = 2 ·Cov(M(·),MI(·)). Using results in Schmidt (2003),
this term is positive because Mθ(·) > 0 and MθI(·) > 0, by assumption.

10The focus in Carpenter (2000) and Ross (2004) is on how project uncertainty translates
into risk premia, given nonlinear (especially, option-type) contracts and concave utility func-
tions. Our Lemma 1 is agnostic about the shape of the managers’ utility functions and instead
asks how the variance in compensation is affected by upfront investments.
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exposed.11 Linear contracts are a special case of Lemma 1(iii): increased variance

in M(·) then translates directly into increased variance in compensation. This

observation will greatly simplify the analysis in Sections 3-5.

— INSERT FIGURE 2 HERE —

We now turn to delegated investment decisions. In many instances, divisional

investments are not contractible. While aggregate capital expenditures are rou-

tinely monitored and verifiable, it is often difficult to trace individual pieces of

equipment (or personnel training costs) to specific transactions. Non-contractible

investments will be chosen by Manager A non-cooperatively, given his compen-

sation contract.12 Our goal is to compare the ensuing equilibrium investment

made by Manager A with the above benchmark solution I∗. We assume that

for any given contract, sA(πA), there exists a unique interior optimal investment

choice, denoted I∗∗(γA), that solves Manager A’s investment problem:

max
I

EUA(I | γA). (4)

We say, Manager A underinvests given γA, if I∗∗(γA) < I∗, and he overinvests if

I∗∗(γA) > I∗.

Suppose Manager A does not share in the investment returns (γA = 0), but

still pays for the fixed cost. With sA(·) strictly increasing, Manager A would not

11Reverse arguments apply to the case in which greater investment reduces a division’s
realized performance measure. For a concave contract, Lemma 1(ii) applies, and the manager’s
compensation will exhibit greater variance. Note that Lemma 1(ii) can never occur for Manager
B, because this manager does not bear any fixed cost, and MI > 0. Hence, Manager B free-
rides on the investment, i.e., ∂πB(θ, I)/∂I ≥ 0 always holds. For Manager A, Lemma 1(ii),
can be relevant. As will become clear below, though, our main focus is on a delegation setting
in which Manager A chooses the investment level in his own interest. By revealed preference,
he will never choose any I for which ∂πA(θ, I)/∂I < 0.

12Given the equal-split bargaining protocol employed here, it is easy to see that Manager
A’s investment incentives depend solely on his own contract and are independent of sB(·).
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invest at all because of an extreme hold-up problem. On the other hand, delegat-

ing the investment decision to a manager who can make a take-it-or-leave-it offer

(γA = 1) is generally thought to replicate the benchmark (contractible) outcome

because the manager internalizes all cash flows. Recognizing the investment/risk

link described in Lemma 1 proves this intuition incomplete:

Lemma 2 If s′A(πA) ∈ (0, 1), for any πA, and γA = 1, then Manager A under-

invests.

Proof: For γA = 1, we have πA = M(·) − F (I) and πB = 0. The first-order

condition for the contractible benchmark investment level, I∗ (assumed unique),

reads Π′(I∗) = 0, where, for any I,

Π′(I) = E [MI(θ, I)]− F ′(I)− ρA
2

∂V ar(sA(πA(·)))
∂I

. (5)

If the investment is non-contractible and delegated to Manager A who faces the

contract sA(·) and has full bargaining power, γA = 1, then I∗∗(γA = 1) satisfies

the necessary and sufficient first-order condition EU ′A(I∗∗ | γA = 1) = 0, where,

for any I,

EU ′A(I | γA = 1) = E

[
s′A(πA(·)) · ∂πA

∂I

]
− ρA

2

∂V ar(sA(πA(·)))
∂I

= E [s′A(πA(·)) · (MI(θ, I)− F ′(I))]− ρA
2

∂V ar(sA(πA(·)))
∂I

. (6)

By (5), E [MI(θ, I)] − F ′(I) ≥ 0 for any I ≤ I∗. Therefore, comparing (5) and

(6), by revealed preference, we have I∗ > I∗∗(γA), as MI(θ, I) > F ′(I), for any θ

and any I ≤ I∗, and given s′A(πA(·)) < 1.

The standard intuition in prior studies was that a manager who has all bar-

gaining power vis-a-vis the other manager invests optimally because all cash flows

accrue within his performance measure. Any increasing incentive contract would

constitute a monotone transformation, leaving the optimal solution unaffected.
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However, this intuition ignores the investment/risk link. By Lemma 1, a change

in I affects the compensation risk. Given γA = 1, by (5) and (6), Manager A

under delegation internalizes the same risk premium at the margin as does the

principal under centralization. This alignment argument does not extend to the

investment-related cash flows. Ex ante, the principal fully internalizes the cash

flows, whereas they “flow through compensation” for Manager A. Given s′i(·) < 1,

Manager A undervalues cash flows relative to the risk premium.13 Benchmark

investments would result if the manager were residual claimant, at the margin,

vis-a-vis the other manager (γA = 1) and vis-a-vis the principal (s′(·) ≡ 1). That

is, a complete picture of a manager’s investment incentives requires recognizing

his residual cash flow claims from both “horizontal” inter-agent bargaining and

“vertical” contracting.

Because Manager A underinvests for γA = 0 and for γA = 1 (the novel

finding), this might suggest that he will underinvest for any γA ∈ [0, 1]. However,

as we show below, a manager with interior bargaining power, γA ∈ (0, 1), may

in fact over invest, i.e., invest more than the principal prefers. To illustrate,

consider the objective functions of the principal and of Manager A, respectively,

as per (2) and (3). Starting from γA = 1 (as in Lemma 2), suppose bargaining

power is gradually shifted toward Manager B, i.e., γA decreases. The hold-up

problem reduces Manager A’s investment incentives. At the same time, Manager

A transfers a portion of the investment-related risk premium to Manager B who

now shares in the joint project’s return. As γA shrinks, this risk transfer effect

may eventually push toward overinvestment. Evaluating the net effect of the

countervailing externalities (hold-up and risk transfer) is complicated by the fact

that it involves second moments of nonlinear functions of random variables. To

proceed, we impose more structure on the model.

13Restricting s′i(·) < 1 is descriptive for risk sharing reasons and to avoid any temptation
for the principal to destroy output.
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3 A Linear-Quadratic Model of Interdivisional

Collaboration

In this section we evaluate the direction of the investment distortions under

incomplete contracting by endogenizing the compensation contracts. To create a

role for incentive contracts, we assume each Manager i chooses personally costly

general operating effort, ai ∈ R+ (henceforth, effort), to increase his divisional

income at a personal disutility of Vi(ai). Restating the divisional performance

metrics in (1) gives

πi(ai, θ, I) = ai + ε̃i + γiM(θ, I)− 1i=AF (I),

where ε̃i captures Division i’s general uncertainty. To fix ideas, we model the

joint project as intrafirm trade and impose the following structure:

(a) Linear compensation schemes: si = αi + βiπi, i = A,B, with αi as the

fixed salary and β ≡ (βA, βB) ∈ R2
+ as the vector of pay-performance

sensitivities, PPS.

(b) Linear-quadratic revenues and costs for the joint project: M(q, θ, I) =

R(q, θB) − C(q, θA, I), with C(q, θA, I) = (c − θA − I)q and R(q, θB) =(
r − q

2
+ θB

)
q, where q measures the volume of intrafirm trade. Without

loss of generality, let c = r, with r sufficiently high to ensure nonnegative

costs and revenues. Moreover, F (I) = fI2

2
, with f > 1.

(c) Equal-split bargaining: γA = γB = 1
2
.

(d) As for general operations, the managers’ effort cost functions are quadratic,

Vi(ai) =
via

2
i

2
, vi > 0, and E[ε̃i] = 0 and V ar(ε̃i) = σ2

i , for i = A,B.

Given the additional structure, the managers’ mean-variance preferences can

be restated as:

EUi = αi + βiE[πi(·)]−
ρ

2
β2
i

(
σ2
i +

V ar(M(θ, I))

4

)
− v

2
a2
i . (7)
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Bargaining provides a way of sharing project risk, as reflected in the scaling of the

term V ar(M(·))/4 in the risk premium (Wilson, 1968). The principal’s expected

payoff equals Π = E [
∑

i((1− βi)πi − αi)]. To ensure contract participation, we

impose the individual rationality condition:

EUi ≥ 0, i = 1, 2. (8)

In our setting, αi will be chosen to make (8) bind and leave the agents with zero

rents. The timeline is given in Figure 3.14

— INSERT FIGURE 3 HERE —

With equal-split bargaining, the individual cost and revenue realizations, θi,

are immaterial; only their sum matters for the outcome. We thus collapse them

into the one-dimensional random variable θ ≡ θA + θB, with E[θ] = µ. For given

θ, the optimal level of trade then is q∗(θ, I) = θ + I and the ex-post surplus

is M(θ, I) ≡ M(q∗(θ, I), θ, I) = (θ+I)2

2
. The single-crossing condition, MθI ≥ 0,

which played a key role in Lemma 1, thus arises endogenously in this canonical

setting. In expectation over θ, E[q∗(θ, I)] = q∗(µ, I) = µ+ I. For simplicity, we

assume that θ follows a discrete (two-point) distribution: with equal probability

it takes values (µ−
√
S) or (µ+

√
S), where

√
S < µ to ensure positive quantities.

Then, V ar(θ) = S. All noise terms, θ and εi, i = A,B, are independent. To

differentiate it from the divisions’ general uncertainty, ε̃i, we refer to S as the

project uncertainty, pertaining to intrafirm trade. Lastly, denote the efficient

investment in a hypothetical risk-free world by Î ∈ arg maxI E[M(θ, I)] − fI2

2
,

which yields Î = µ
f−1

.

14In practice, one might expect investment to precede operating efforts. Note however
that the assumption that efforts and investments are chosen simultaneously is without loss of
generality in Sections 3-5 where we assume linear contracts.
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Throughout the article we ignore firmwide profit sharing, which would avoid

the hold-up problem if used as the sole basis for compensation. Even with profit

sharing the main tension in our model would remain provided, as would be the

case in most settings, managers care more about their own performance than

about that of the other division.15,16

4 Contractible Investment

As a benchmark, suppose that the investment I is contractible, e.g., it may entail

specialized equipment used in a verifiable manner to make a particular product.

In this case, the principal essentially instructs Manager A as to the investment

level and, in designing compensation contracts, only needs to observe the effort

incentive constraints:

ai(βi) ∈ arg max
ai

EUi(ai, I | αi, βi). (9)

In our setting, the agents’ effort choices are independent of the investment level

for given PPS. We collapse the principal’s (net) payoff from Division i’s general

operations into the function

Φi(βi) ≡ ai(βi)−
v

2
(ai(βi))

2 − ρ

2
β2
i σ

2
i .

Using (9), Φ′i(0) > 0 > Φ′i(1) and Φ′′i (βi) ≤ 0 for any βi ∈ [0, 1]. Let βMH
i ∈

arg maxβi Φi(βi). As a benchmark, this yields the well-known PPS in a pure

moral hazard model without intrafirm trade, βMH
i = (1 + ρvσ2

i )
−1.

15Holmstrom and Tirole (1991), Anctil and Dutta (1999) study how profit sharing trades
off investment incentives and risk sharing. It is easy to see that pure profit sharing is never
optimal for sufficiently large general uncertainty, σ2

i , due to poor risk sharing.
16By focusing on inter-divisional bargaining, we also ignore more “administered” internal

pricing methods. First, cost- or market-based internal pricing would require more information
held at the headquarters level (Gox and Schiller, 2007). Second, internally traded goods and
services are often non-commoditized in nature, creating inefficiencies also under those methods.
For instance, if the external market for the intermediate good is imperfectly competitive, pricing
internally at market may result in double-marginalization (Baldenius and Reichelstein 2006,
Arya and Mittendorf 2010). Third, we ignore ex-ante fixed-priced contracts to be renegotiated
after the realization of the state variable, as in Edlin and Reichelstein (1994).
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The principal’s expected payoff with contractible investments is given by

Π(I,β) ≡ E [M(θ, I)]− F (I) +
∑
i=A,B

[
Φi(βi)−

ρ

8
β2
i · V ar(M(θ, I))

]
. (10)

As argued above, the principal extracts the entire surplus ex ante and therefore

solves the following optimization program (superscript “∗” indicates contractible

investments):

Program P∗: maxβ, I Π(I,β).

Let (I∗,β∗) denote the solution to Program P∗, henceforth the benchmark.

It is instructive to decompose the principal’s optimization problem into two

steps: first, derive the optimal PPS for given investment; second, solve for the

optimal level of investment. Manager i’s optimal PPS conditional on I is

βoi (I) =
1

1 + ρv
(
σ2
i + V ar(M(θ,I))

4

) .
Denote βo(I) = (βoA(I), βoB(I)). Recognizing the project risk pushes the PPS

in our setting below βMH
i . The principal picks the investment level I∗ that

maximizes the value function,

Π∗(I) ≡ Π(I,βo(I)).

Using the Envelope Theorem:17

Π∗
′
(I) = E [MI(θ, I)]− F ′(I)− ρ

8

∑
i

(βoi (I))2∂V ar(M(θ, I))

∂I

= q∗(µ, I)− fI − ρS

4

∑
i

(βoi (I))2q∗(µ, I). (11)

The optimal benchmark solution calls for Π∗
′
(I∗) = 0 and β∗i = βoi (I

∗).

17In the Appendix, equation (21), we show that the project-related variance is
V ar(M(θ, I)) = [q∗(µ, I)]2S. Using ∂q∗(·)/∂I = 1, we have ∂V ar(M(θ, I))/∂I = 2q∗(µ, I)S.
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As a maintained regularity condition, for the remainder of the article, we

bound the project uncertainty from above and say that project risk is feasible if

and only if:18

S ≤ min{Smax, S}, where Smax ≡
4 ·min{σ2

A, σ
2
B}

(q∗(µ, Î))2
, S ≡ 4

ρ
∑

i(β
MH
i )2

. (12)

The restriction that S ≤ S ensures the principal will choose a strictly positive

benchmark investment level, I∗ > 0. The restriction that S ≤ Smax ensures that

the project-related compensation risk for each manager is less than his respective

general risk.19 It effectively bounds the benchmark PPS so that β∗i ≥ βmini ≡

(1 + 2ρvσ2
i )
−1

. Let B ≡ [βminA , βMH
A ]×[βminB , βMH

B ] denote the relevant PPS range

in the benchmark setting.

Lemma 1 establishing the link between investments and compensation risk

directly applies to this setting with linear contracts, and the additional structure

sharpens the intuition for this finding. Upfront investments in fixed assets lower

the marginal cost of producing the intermediate product, raising the equilibrium

volume of intrafirm trade, pointwise.20 Ex ante, however, each unit traded is sub-

ject to the random shock, θ. Greater intrafirm trade volume therefore translates

into greater ex-ante surplus uncertainty and, given linear contracts, increased

compensation risk.21

18We had earlier restricted
√
S < µ to ensure q∗(·) > 0. This does not effectively constrain

the solution because we can always set µ sufficiently high. The parameter restrictions in
(12) can be restated in terms of the primitives: Smax = 4[(f − 1)/µf ]2 · min{σ2

A, σ
2
B} and

S = 4[ρ
∑
i=A,B(1 + ρvσ2

i )−2]−1

19If the risk associated with the joint project were substantially larger than that of each
unit’s stand-alone operations, one would expect the divisions to be merged. On a technical
level, S ≤ Smax ensures that the project-related risk premium for Manager i, ρ/8(βoi (I))2 ·
V ar(M(θ, I)), is increasing in I for any I ≤ Î, because the direct effect on the variance of the
surplus dominates the indirect effect in form of a reduced PPS.

20A similar effect would obtain if the investment were downstream, say, in advertising so as
to shift the marginal revenue function.

21This contrasts with the literature that has added actions that directly affect the outcome
variance, e.g., Ziv (2000), Prendergast (2002), Baker and Jorgensen (2005), Bertomeu (2008),
Liang et al. (2008), Indjejikian and Matejka (2009), Friedman (2013, 2014), and Liang and
Nan (2014).
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Intrafirm trade and general operations in our model are technologically sep-

arable, yet contractually intertwined: the principal optimally mutes the PPS

anticipating that investments in fixed assets increase the managers’ compensa-

tion risk at the margin. Thus, the costs associated with specific investments

entail not just capital expenditures but also incremental risk premia (for given

PPS) as well as indirect opportunity costs in that the principal optimally lowers

the PPS, which in turn reduces the managers’ effort input. For managers that

are ex-ante symmetric except for their investment opportunities, it follows that

they will face identical PPS in the benchmark setting, i.e., β∗A = β∗B if and only

if σ2
A = σ2

B.22

5 Non-Contractible Investment

How does contractual incompleteness, in conjunction with ex-post surplus shar-

ing among the managers, affect investment levels and contracts? The answers

given in earlier studies (e.g., Anctil and Dutta, 1999) are: (a) incomplete con-

tracting yields underinvestment; (b) absent profit sharing, managers’ investment

incentives are independent of their PPS and, conversely, the managers’ PPS

should be independent of their investment opportunities. As we show now, all

these findings can be overturned by accounting for joint project risk.

Suppose investment I is chosen by Manager A in his own best interest. In

keeping with the bulk of the incomplete contracting literature, we assume I

is observable to Manager B but cannot be verified to the principal. Given the

structure imposed, Manager A’s effort and investment choices are mutually inde-

pendent for given PPS, so we can separate out the parts of Manager A’s expected

22While the managers will receive the same PPS under the contractible benchmark solution
(β∗A = β∗B = β∗), their fixed salaries, α∗i , will differ. Specifically, α∗A = α∗B + β∗F (I∗), to
compensate Manager A for the fixed cost.
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payoff that relate to the joint project by defining

Γ(I | βA) ≡ βA

(
E[M(θ, I)]

2
− F (I)− ρ

8
βAV ar(M(θ, I))

)
.

We denote the investment level chosen by Manager A facing a PPS of βA by

I∗∗(βA) ∈ arg maxI Γ(I | βA). It solves the first-order condition23

Γ′(I∗∗(βA) | βA) = 0, (13)

where, for any I and βA:

Γ′(I | βA) = βA

(
E [MI(θ, I)]

2
− F ′(I)− ρ

8
βA
∂V ar(M(θ, I))

∂I

)
= βA

(
q∗(µ, I)

2
− fI − ρS

4
βAq

∗(µ, I)

)
. (14)

The principal’s optimization program with non-contractible investments reads

(superscript “ ∗∗ ” denotes non-contractible investments):

Program P∗∗ : max
β,I

Π(I,β),

subject to (13) .

Denote by (I∗∗,β∗∗) the solution to this program and by Π∗∗(β) ≡ Π(I∗∗(βA),β)

the principal’s expected payoff with non-contractible investments as a function

of the PPS.

A key tenet of the earlier literature is that contractual incompleteness com-

bined with ex-post bargaining results in underinvestment. However, a com-

parison of the respective first-order conditions (11) and (14) shows that non-

contractible investments differ from the contractible benchmark for two distinct,

countervailing reasons. First, Manager A’s divisional profit measure reflects only

half the benefit from investing but all fixed costs—the classic hold-up problem.

At the same time, the manager takes into account only his own incremental risk

23Concavity of Γ(·) in I, for any βA, is ensured by our maintained assumption that f > 1.
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premium when investing and ignores that of the other manager. This risk trans-

fer effect encourages over investment, all else equal. To the best of our knowledge,

this effect has not been identified before.24

5.1 Investment Distortions for Exogenous Contracts

To gain some preliminary understanding of the key tradeoffs, we proceed by first

looking at Manager A’s investment incentives for given contracts. Specifically, we

allow for any PPS within the relevant range identified above for the benchmark

PPS, i.e, β ∈ B. Later we solve for the optimal compensation schemes under

incomplete contracting.

The trade-off of the hold-up and risk transfer effects determines the direction

of the investment distortion. Let I∗(β) ∈ arg maxI Π(I,β). Adapting (11) to

exogenous contracts, the principal’s marginal investment benefit for given β is

∂

∂I
Π(I,β) = q∗(µ, I)− fI − ρS

4

∑
i

β2
i q
∗(µ, I). (15)

Differencing the principal’s and Manager A’s respective marginal investment

benefits—i.e., subtracting (14) from (15)—gives:25

∆(I | β) ≡ ∂

∂I
Π(I,β)− Γ′(I | βA)

= q∗(µ, I)− fI − βA
(
q∗(µ, I)

2
− fI

)
︸ ︷︷ ︸

hold-up effect

− ρS
4
β2
Bq
∗(µ, I)︸ ︷︷ ︸

risk transfer effect

. (16)

24See Wilson (1968) for risk sharing in syndicates. In Wilson’s paper, the syndicate aims
for a Pareto-optimal decision given the risk shared among syndicate members. In our model,
the decision that affects the risk borne by the syndicate is made by one player (Manager A) in
his own self interest.

25In equation (16), we use the term “hold-up effect” somewhat loosely. If βA → 1 (i.e., if
Manager A were residual claimant for his divisional income measure), we would recoup the
canonical hold-up model. For general PPS, we need to rescale the marginal cash returns and
cost from investing appropriately. This reflects the fact that, unlike most hold-up studies
that sidestep compensation issues, our model features both “horizontal” externalities (the γ-
sharing of M between the managers) as well as “vertical” externalities (the sharing of πi among
Manager i and the principal as mediated by the PPS).
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If ∆(I∗(β) | β) > 0, for a given β, then the hold-up effect dominates and Manager

A underinvests, I∗∗(βA) < I∗(β). Vice versa, if ∆(I∗(β) | β) < 0, then the risk

transfer effect dominates and Manager A overinvests, i.e., I∗∗(βA) > I∗(β).

In the following, we present conditions that allow us to evaluate the sign of

∆(I∗(β) | β), and thereby the nature of the prevailing investment distortion.

We first address the standard underinvestment problem:

Condition (UI) S < SU , for some finite and feasible threshold SU .

The Appendix (proof of Lemma 3) provides a closed-form expression for the

threshold SU invoked in (UI) and shows it is positive and feasible as per (12).

Moreover, the SU -threshold is shown there to be an increasing function of σ2
B, so

that Condition (UI) restricts the joint project to be only moderately risky relative

to the operating uncertainty faced by the non-investing manager, Manager B.

Lemma 3 If Condition (UI) holds, then Manager A will underinvest, i.e., I∗∗(βA) <

I∗(β), for any β ∈ B.

Condition (UI) ensures that the risk transfer effect is limited. The severity

of the risk transfer effect increases in: (a) the overall incremental project risk

resulting from the upfront investment, which is proportional to S, and (b) the

extent to which the non-investing party is sensitive to this incremental project

risk, as captured by Manager B’s PPS. If Manager B faces highly volatile gen-

eral operations, then he will be relatively insensitive to the additional project

risk because the relevant range for his benchmark PPS will entail low-powered

incentives (small βMH
B ). The hold-up effect then remains the dominant force

even if the returns from the joint project are somewhat volatile.26

26The earlier literature that has studied hold-up problems while abstracting from divisional
moral hazard problems (e.g., Baldenius, Reichelstein and Sahay, 1999) can be viewed as a
limit case of our analysis in which σ2

i becomes large. In a highly volatile environment, the PPS
remains positive but becomes arbitrarily small. Lemma 3 then applies.
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More surprisingly, incomplete contracting may result in overinvestment:

Condition (OI) S > SO, σB ∈
(
σoB,O, σ

oo
B,O

)
, σA > σA,O = σooB,O + δ, δ > 0,

and v < vO, for some finite and feasible thresholds (SO, σ
o
B,O, σ

oo
B,O, σA,O, vO).

The Appendix (proof of Lemma 4) provides closed-form expressions for the

thresholds invoked in (OI) and shows they are positive and feasible as per (12).

Lemma 4 If Condition (OI) holds, then Manager A will overinvest, i.e., I∗∗(βA) >

I∗(β), for any β ∈ B.

Lemma 4 constitutes a departure from the earlier incomplete contracting

literature. If the investing manager’s environment is more volatile, then the non-

investing manager’s PPS will be higher-powered, in comparison. This in turn

makes the non-investing manager more sensitive to the incremental investment-

induced risk. Condition (OI) implies that the incremental project risk is high,

and the investing party internalizes only a small portion of the associated risk

premium. The additional requirements in Condition (OI) again ensure feasibility

as per (12).

Lemmas 3 and 4 take the compensation contracts as given and hence are pre-

liminary in nature. We now show that these results carry over qualitatively to the

full-fledged contracting problem. Additional departures from earlier incomplete

contracting results obtain, especially regarding the optimal PPS.

5.2 Optimal (Linear) Contracts

Because the principal in our setting can perfectly predict the managers’ actions

for any given contract, it raises the question, how the principal will adjust the

managers’ compensation contracts in anticipation of the induced effort and in-

vestment choices. We begin by asking how Manager A’s investment incentives

are affected by the incentive contracts. By (14), Manager B’s PPS in our setting

does not affect I∗∗, but Manager A’s own PPS does:
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Proposition 1 If the investment is non-contractible, I∗∗(βA) is strictly decreas-

ing and convex in the investing manager’s PPS, βA.

Higher-powered incentives expose Manager A to greater project risk at the

margin. As a result, he invests less as his PPS increases. Aside from the usual

risk sharing considerations, the investing manager’s contract hence trades off

his incentives to engage in personally costly effort and investments paid with

divisional funds. The convexity part of the result can best be understood by

inspecting the investment incentive constraint (14): Manager A’s PPS, βA, scales

the project-related incremental risk premium. His investment choice therefore

reacts more strongly to a change in βA for higher levels of I, by Lemma 1. By

the “strictly decreasing” part of Proposition 1, higher investment levels go hand

in hand with muted incentives, i.e., a low level of βA.

While Proposition 1 hints at a complex interplay between Manager A’s PPS

and equilibrium investments, incomplete contracting does not conceptually alter

the way Manager B’s PPS is determined. Lacking any investment opportunity,

Manager B’s PPS will always be set so that it trades off effort incentives and risk

costs anticipating the respective equilibrium investment levels, i.e., β∗B = βoB(I∗)

in the benchmark setting, and β∗∗B = βoB(I∗∗) under delegation. Using the fact

that βoi (I) is monotonically decreasing in I, the ranking of Manager B’s PPS

across the two settings is an immediate corollary of the ranking of the equilibrium

investments. In fact, Conditions (UI) and (OI) alone predict the investment

distortions without the need to fully characterize Manager A’s incentive contract:

Proposition 2

(i) If Condition (UI) holds, then I∗∗ < I∗ and, thus, β∗∗B > β∗B.

(ii) If Condition (OI) holds, then I∗∗ > I∗ and, thus, β∗∗B < β∗B.

The predicted investment distortions from Lemmas 3 and 4 carry over to the

case of endogenous compensation contracts. The reason is that it is never optimal
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for the principal to adjust βA to the level necessary to induce the benchmark

investment I∗. For instance, doing so for the case of (UI) would require muting

βA to the point where the opportunity cost in terms of reduced effort outweighs

the investment benefits. Hence, some degree of underinvestment remains in

equilibrium. The associated drop in the project risk premium, at the margin,

allows the principal to elicit greater effort from Manager B. The arguments for

Condition (OI) are analogous.

We now turn to the optimal contract for Manager A, which has to take into

account the feedback effect βA has on equilibrium investments, by Proposition 1.

Take again the case of Condition (UI): by Proposition 2, anticipated equilibrium

underinvestment would call for raising βA (we label this the risk premium effect).

At the same time, Proposition 1 calls for lowering βA to stimulate investment

(the investment inducement effect).

To illustrate this tradeoff it is useful to write the principal’s expected payoff

in reduced form as a function solely of the investing manager’s PPS, βA:

Π∗∗(βA) ≡ Π(βA, β
o
B(I∗∗(βA)), I∗∗(βA)).

Manager B’s PPS will be optimally adjusted to the anticipated equilibrium in-

vestment level I∗∗(βA). The distortion in Manager A’s PPS is determined by

the slope of Π∗∗(·) at the benchmark PPS of β∗A. If Π∗∗
′
(β∗A) > 0, then starting

from the benchmark level, the principal benefits from raising βA. Incomplete

contracting would then result in higher-powered incentives for Manager A, i.e.,

β∗∗A > β∗A. Vice versa, Π∗∗
′
(β∗A) < 0 would imply β∗∗A < β∗A. As we show in the

Appendix, Π∗∗
′
(β∗A) can be decomposed as follows:

23



Π∗∗
′
(β∗A) =

 ∂Π(βA, β
o
B(I), I)

∂I

∣∣∣∣
I=I∗∗(βA)︸ ︷︷ ︸

(X)

· I∗∗′(βA)︸ ︷︷ ︸
(Y )


∣∣∣∣∣∣∣∣∣∣
β∗A︸ ︷︷ ︸

investment inducement effect

+
ρ

4
β∗A ·∆V (β∗A)︸ ︷︷ ︸

risk premium effect, (Z)

,

(17)

where, for any βA,

∆V (βA) ≡ V ar(M(θ, I∗))− V ar(M(θ, I∗∗(βA))) (18)

denotes the (trade-related) variance differential between the benchmark and the

delegation settings.27

The countervailing forces affecting the investing manager’s PPS are apparent

now: among the three determinants of (17), the investment sensitivity term Y is

negative, by Proposition 1. The remaining terms, X (the marginal investment

return to the principal) and Z (the marginal risk premium), may take either sign.

However, X and Z always have the same sign, which is uniquely determined

by the equilibrium investment distortion. Consider the case of (UI), so that

I∗∗(β∗A) ≤ I∗, by Proposition 2. This implies: (a) savings in the differential

risk premium at the margin (i.e., Z ≥ 0) because ∆V (·) > 0; and (b) the

principal would benefit from an incremental investment holding fixed the PPS

(i.e., X ≥ 0).28 Therefore, given Condition (UI), an increase in βA has a negative

investment inducement effect (the product of X and Y ), but a positive risk

premium effect. Conversely, under (OI), both X and Z are negative.

— INSERT TABLE 1 HERE —
27Note that, for the non-investing manager the risk premium effect was the sole determinant

of |β∗∗B − β∗B | in Proposition 2 because βB does not affect investments.
28To illustrate the principal’s positive net marginal benefit from greater investment, all else

equal, recall that for any I, βoi (I) ∈ arg maxβi
Π(I,β), and Π(I,β) has decreasing differences,

i.e., ∂Π2/(∂I∂βi) ≤ 0, for all (I, βi), i = A,B. Therefore, to sign term X in equation (17) for
any I < I∗: 0 < dΠ(βo(I), I)/dI = ∂Π(βo(I), I)/∂I < ∂Π(β∗A, β

o
B(I), I)/∂I, where the first

inequality uses I < I∗, the equality uses the Envelope Theorem, and the second inequality
holds because β∗A < βoA(I) for any I < I∗.
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We now present sufficient conditions that allow us to evaluate this tradeoff.

Proposition 3 Given Condition (UI), there exist finite and feasible thresholds

σ̂oo ≥ σ̂o and f̂U such that:

(i) β∗∗A < β∗A, if σ2
A > σ̂oo;

(ii) β∗∗A > β∗A, if σ2
A < σ̂o and f > f̂U .

As a result of the countervailing forces on the investing manager’s PPS, the

directional predictions on β∗∗A are parameter-specific. Volatile operations at the

investing division (Proposition 3(i)) work in favor of the investment inducement

effect. For high σ2
A, Manager A’s PPS will be low, all else equal. This implies:

(a) Manager A’s investment choice will respond strongly to changes in his PPS

(by the convexity result in Proposition 1), i.e., Y is large in absolute terms; (b)

the risk premium effect Z is small because it is scaled by β∗A. The investment

inducement effect then is the dominant force, calling for muted incentives for

Manager A to alleviate the underinvestment problem.

A relatively stable environment at Division A together with sufficiently con-

vex investment costs (Proposition 3(ii)) work in the opposite direction. The

investment inducement effect is dampened, reducing Y in absolute terms, while

the risk premium effect Z is scaled up. As a result, βA is pushed above the

benchmark level given (UI).

Turning to the case of (OI), the arguments in the preceding discussion are

reversed. Our last result hence is dual in nature to Proposition 3:29

Proposition 3′ Given Condition (OI), there exists a feasible threshold f̂O such

that:
29The sufficient conditions on σ2

A for predicting the distortions in Manager A’s PPS are
qualitatively similar across the (UI) and (OI) scenarios. The threshold for σ2

A is identical
across Propositions 3 and 3′. On the other hand, the sufficient condition on the fixed cost
function in Proposition 3′, as derived in the Appendix, is tighter than that for (UI), i.e.,

f̂O > f̂U . This tighter condition ensures existence of σ̂o that satisfies both (12) and (OI).
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(i) β∗∗A > β∗A, if σ2
A > σ̂oo;

(ii) β∗∗A < β∗A, if σ2
A < σ̂o and f > f̂O.

With equilibrium over investment, increasing investment even further would

(a) reduce the principal’s payoff for given PPS (X < 0) and (b) scale up the

differential risk premium (Z < 0). Volatile operations at Division A again make

the investment inducement effect the dominant one (now implying high-powered

incentives for Manager A to alleviate the overinvestment tendency). In contrast,

moderate σ2
A together with high marginal investment costs favor the risk premium

effect (now implying muted incentives to adjust for the anticipated expansion

in trade). Tables 2 and 3 present a numerical example illustrating our main

results. Table 2 shows overinvestment for sufficiently high (yet feasible, by (12))

values of the project uncertainty S. Table 3 varies the operating uncertainty of

the investing division to illustrate the equilibrium PPS: the distortions in β∗∗B

are inversely related to the investment distortions, whereas for Manager A this

relation is parameter-specific.

— INSERT TABLE 2 AND TABLE 3 HERE —

Our setting with one-sided investment allows us to derive qualitatively dif-

ferent predictions for the incentive contracts offered to managers as a function

of their respective scope to invest in joint projects. We find that the PPS for

managers without investment opportunities is negatively associated with equilib-

rium investments undertaken by other managers. As a consequence, if the eco-

nomic environment is such that underinvestment (overinvestment) is anticipated

in equilibrium, incentives for non-investing managers will be higher-powered

(lower-powered, respectively) than in the benchmark setting. For managers with

investment opportunities, the relation between equilibrium investments and PPS
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is ambiguous because of the endogenous nature of investments. Especially in

settings where managers’ investment choices react sensitively to changes in their

PPS (because high general operating risk mutes the PPS to begin with), the

equilibrium association between distortions in the PPS and investment levels

can be positive.

There is a sizable empirical literature that has focused on regressing the PPS

on measures of divisional risk, often however with little regard for synergies

across divisions. A separate strand of papers has linked performance measures

empirically to the extent of interdivisional interdependencies, e.g., Bushman et

al. (1995), Keating (1997), Bouwens and van Lent (2007), Bouwens et al. (2013).

These studies focused on “broadening” managers’ performance measures by in-

cluding non-financial metrics or profit sharing. While balanced scorecards and

profit sharing are used by many firms, the bulk of division managers’ variable

compensation appears still to be driven by own-division profit (e.g., Abernethy

et al., 2004). Absent such broadened performance measures, the earlier litera-

ture had little to say whether or how intrafirm interdependencies should affect

a managers’ divisional PPS. Our analytical results suggest that such synergies,

and especially the relationship-specific investments that support them, can be

important omitted variables. More specifically, our results predict systematic

differences in managers’ PPS as a function of their investment opportunities,

even after controlling for their divisional agency problems.

The main mechanism through which investment opportunities in “joint projects”

affect the PPS is the equilibrium distortion in specific investments relative to a

counterfactual setting in which investments can be directly implemented by the

principal. While such investment distortions are generally not observable to the

researcher, their underlying conditions, as described by Conditions (UI) and (OI)

in our model, are. Take the case of volatile general operations (UI): all else equal,

a manager’s PPS should be lower if he is given authority to invest than it would

27



be absent such authority (Proposition 3(i)). To test such predictions, it would

be useful to enrich empirical studies on incentives and organizational processes

such as Nagar (2002) by distinguishing between the delegation of tasks that are

personally costly to managers and those which call for managers to invest the

firm’s funds in efficiency-enhancing assets.

6 Concluding Remarks

This article establishes a link between pay-performance sensitivity (PPS) and

managers’ incentives to invest in joint projects. Greater relationship-specific

investments increase the scale of such projects and thus add to the overall com-

pensation risk borne by the managers. Formally accounting for the incremental

risk associated with specific investments overturns a number of key results from

prior studies. First, compared with the benchmark of contractible investments,

a manager always underinvests if, ex post, he holds all bargaining power vis-

a-vis his counterpart, but may overinvest for more symmetric bargaining pro-

tocols. The reason is that he transfers to the other manager a portion of the

investment-induced compensation risk. Second, managers operating under high-

powered incentives are reluctant to invest, all else equal. Third, managers facing

similar divisional agency problems should receive incentive contracts that vary

in a predictable manner in their respective investment opportunities.

The approach taken in most of the prior literature was to look separately at

the agency and investment/intrafirm trade problems. This article argues that

such a separation hides important linkages between these problems. Accounting

for these linkages qualitatively changes several standard results in the incomplete

contracting literature. These linkages can be traced to compensation risk that

is intrinsically driven by the state uncertainty, which lies at the heart of the

incomplete contracting paradigm.
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At a more fundamental level, our analysis emphasizes the endogenous nature

of risk. Earlier analytical studies have allowed for managers to take actions that

directly affect the firm’s risk profile, such as CFOs engaging in risk management

(Friedman 2013, 2014). Our article demonstrates that even “standard” invest-

ments in operating assets such as PP&E typically have second-moment effects

in settings with underlying state uncertainty. While our model has focused on

specific investments fostering intrafirm collaborations, managers routinely invest

also in equipment aimed at improving the efficiency of external transactions.

The issue of endogenous risk, determined jointly with compensation contracts,

therefore applies much more broadly than earlier studies may have suggested.
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1

Contracts, si(·),
exogenously
given

2

I chosen

3

θ realized

4

Managers
bargain over M

Figure 1: Timeline for Section 2
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(a) Convex Contract (b) Concave Contract

pdf(πi(θ, I
o))

pdf(πi(θ, Io))

si(πi)

pdf(πi(θ, Io))

si(πi)

pdf(πi(θ, I
o))

θ θ

pdf(πi)

si(·)
pdf(πi)

si(·)

Figure 2: Investment (Io > Io) increasing the mean and variance of πi(θ, I)
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1

Contracts
signed
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ai and I
chosen

3

θ
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4

Managers
bargain over M

Figure 3: Timeline for Sections 3-5
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sign(X) sign(Y ) sign(Z)

Condition (UI) + − +

Condition (OI) − − −

Table 1: Summary of signs of X, Y and Z
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Table 2: Equilibrium investments
Numerical example: µ = 5, f = 15, ρ = 1, v = 0.0001, σ2

B = 24, σ2
A = 4500.

Here, SU = 2, SO = 2.7 and min{S̄, Smax} = 2.72. Investments are scaled by 100.
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(a) Condition (UI) with S = 1.9 (b) Condition (OI) with S = 2.7

Table 3: Equilibrium PPS and investment distortions
Numerical example: µ = 5, f = 15, ρ = 1, v = 0.0001, σ2

B = 24.
PPS are scaled by 106 and investments are scaled by 100.
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Appendix

Proof of Lemma 1: By definition, V ar(si(πi)) = E[si(πi)
2]− (E[si(πi)])

2, and

hence, using the definition of covariance,

∂V ar(si(πi(·))
∂I

= E

[
2si(πi(·))

∂si(πi(·))
∂I

]
− 2E[si(πi(·))]E

[
∂si(πi(·))

∂I

]
= 2 · Cov

(
si(πi(·)),

∂si(πi(·))
∂I

)
.

Using results in Schmidt (2003) on the covariance of monotone functions, this

term is weakly positive at some arbitrary value I = x if:

∂si(πi(·))
∂θ

∣∣∣∣
I=x

= s′i(·)γiMθ(·) ≥ 0, (19)

∂2si(πi(·))
∂I∂θ

∣∣∣∣
I=x

=
∂

∂I

(
∂si(πi(·))

∂θ

)
= γi [s

′′
i (·)Mθ(·) (γiMI(·)− 1i=AF

′(x)) + s′i(·)MIθ(·)]

≥ 0. (20)

Conditon (19) is satisfied under our maintained assumptions. Condition (20) is

satisfied if any of the following conditions holds:

(i) s′′i (πi) > 0, for any πi, and ∂πi(θ,I)
∂I

∣∣∣
I=x

= γiMI(·)− 1i=AF ′(x) ≥ 0, for any

θ;

(ii) s′′i (πi) < 0, for any πi, and ∂πi(θ,I)
∂I

∣∣∣
I=x

= γiMI(·)− 1i=AF ′(x) ≤ 0, for any

θ;

(iii) |s′′i (πi)| < δ, for any πi and some δ positive but sufficiently small.

Calculation of the variance of the contribution margin: The expectation

of the contribution margin, M(θ, I) = (θ+I)2

2
, is:

E[M(θ, I)] =
1

2

(
(µ−

√
S + I)2

2

)
+

1

2

(
(µ+

√
S + I)2

2

)
=

(µ+ I)2 + S

2
.
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The variance of the contribution margin, M(θ, I) = (θ+I)2

2
, follows as:

V ar(M(θ, I)) =
1

2

(
(µ−

√
S + I)2

2
− (µ+ I)2 + S

2

)2

+
1

2

(
(µ+

√
S + I)2

2
− (µ+ I)2 + S

2

)2

= (µ+ I)2S

= [q∗(µ, I)]2S. (21)

Proof of Lemma 3: As defined in the main text, let I∗(β) ∈ arg maxI Π(I,β)

for any β ∈ B ≡ [βminA , βMH
A ] × [βminB , βMH

B ]. The first-order condition for the

optimal contractible benchmark investment level, in (15), is:

∂

∂I
Π(I,β)

∣∣∣∣
I∗(β)

= q∗(µ, I∗)− fI∗ − ρS

4
(β2

A + β2
B)q∗(µ, I∗) = 0. (22)

Our maintained assumption that f > 1 ensures concavity. For given βA ∈

[βminA , βMH
A ], using (21), Manager A sets the non-contractible investment I∗∗(βA)

such that

Γ′(I | βA) = βA

(
q∗(µ, I)

2
− fI − ρS

4
βAq

∗(µ, I)

)
equals zero at I = I∗∗(βA). To compare I∗∗(βA) with I∗(β), it is sufficient to

sign the derivative Γ′(I | βA) at I = I∗(β). Using (22),

Γ′(I | βA)|I∗(β) = βA

(
ρS

4
(β2

B + β2
A − βA)q∗(µ, I∗)− q∗(µ, I∗)

2

)
∝ ρS

2
[β2
B − βA(1− βA)]− 1

≡ h.

A necessary and sufficient condition for I∗∗(βA) < I∗(β) therefore is that

h < 0. First, note that βA(1−βA) ∈
(
0, 1

4

)
for any βA ∈ (βminA , βMH

A ). Moreover,
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because βB < βMH
B = (1 + ρvσ2

i )
−1:

h ≡ ρS

2
[β2
B − βA(1− βA)]− 1 <

ρS

2
β2
B − 1 <

ρS

2
(βMH

B )2 − 1 < 0, (23)

if S < SU ≡ 2
ρ

(1 + ρvσ2
B)

2
. In summary, I∗(β) > I∗∗(βA) for any β ∈ B if

S < SU , i.e., if Condition (UI) holds.

Proof of Lemma 4: Building on the proof of Lemma 3, I∗∗(βA) > I∗(β) if

and only if h ≡ ρS
2

[β2
B − βA(1− βA)]− 1 > 0. We derive sufficient conditions for

this to be the case and then verify that these conditions satisfy the feasibility

requirement in (12). A necessary condition for h > 0 is that (βB)2 > βA(1−βA).

Using βA(1− βA) < 1
4
, and βB ≥ βminB , we have that (βB)2 > βA(1− βA) if

σ2
B <

1

2ρv
. (24)

Lastly, given that (βB)2 > βA(1− βA), h > 0 if

S > SO ≡
2

ρ
(
(βminB )2 − 1

4

) =
2

ρ
(

1
(1+2ρvσ2

B)2
− 1

4

) . (25)

It remains to verify feasibility of (25) as per (12) under the stated conditions.

We first confirm that SO < S:

SO − S =
2

ρ
(
(βminB )2 − 1

4

) − 4

ρ
∑

i(β
MH
i )2

∝
∑
i

(βMH
i )2 − 2(βminB )2 +

1

2
.

A sufficient condition for this term to be negative is that σB < σooB,O ≡ 0.05√
ρv

and

σA > σooB,O + δ, where δ ≡ 0.61√
ρv

. It remains to confirm that SO < Smax:

SO − Smax =
2

ρ
(
(βminB )2 − 1

4

) − 4

q∗(µ, Î)2
min{σ2

A, σ
2
B}

∝ q∗(µ, Î)2 − 2ρσ2
B

(
(βminB )2 − 1

4

)
≤

(
µf

f − 1

)2

− 15

10
ρσ2

B,
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because σB < σooB,O. The last term is negative if σ2
B > (σoB,O)2 ≡ 10

15ρ

(
µf
f−1

)2

.

This is feasible if (σoB,O)2 < (σooB,O)2 which holds if v < vO ≡ 3
800

(
f−1
µf

)2

.

We have shown that (25) is feasible as per (12) if v < vO, σB ∈
(
σoB,O, σ

oo
B,O

)
,

and σA > σA,O = σooB,O + δ, δ > 0. We note that (24) holds provided σB < σooB,O.

Combining (24), (25), and the feasibility conditions above, we conclude that

h ≡ ρS

2
[β2
B − βA(1− βA)]− 1 > 0, ∀β ∈ B, (26)

if S > SO, v < vO, σB ∈
(
σoB,O, σ

oo
B,O

)
, and σA > σA,O = σooB,O + δ, δ > 0, i.e.,

if Condition (OI) holds.

Proof of Proposition 1: Applying the Implicit Function Theorem to (14),

I∗∗
′
(βA) = −

q∗(µ,I∗∗(βA))
2

− fI∗∗(βA)− ρS
2
βAq

∗(µ, I∗∗(βA))
βA
2
− βAf − ρS

4
β2
A

=
ρS
4
βAq

∗(µ, I∗∗(βA))
βA
2
− βAf − ρS

4
β2
A

(27)

= −
ρS
4
q∗(µ, I∗∗(βA))
ρS
4
βA + f − 1

2

< 0, (28)

where (27) uses (14), while the inequality in (28) uses the fact that f > 1. To

prove convexity, we use q∗(µ, I∗∗(βA)) = µ+ I∗∗(βA) and (28),

I∗∗
′′
(βA) = − ∂

∂βA

(
ρS
4
q∗(µ, I∗∗(βA))
ρS
4
βA + f − 1

2

)

= −

(
ρS
4
I∗∗
′
(βA)

ρS
4
βA + f − 1

2

−
(
ρS
4

)2
q∗(µ, I∗∗(βA))(

ρS
4
βA + f − 1

2

)2

)

= 2

(
ρS
4

)2
q∗(µ, I∗∗(βA))(

ρS
4
βA + f − 1

2

)2 > 0.

Proof of Proposition 2

Part (i): Given Condition (UI), by Lemma 3, I∗∗(β∗A) < I∗ because β∗A ∈

[βminA , βMH
A ]. By Proposition 1, to induce greater investment, the principal has to
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set βA < β∗A. If limβA→0 I
∗∗(βA) < I∗, then I∗∗ < I∗ holds. If limβA→0 I

∗∗(βA) >

I∗, then there exists a unique threshold PPS, β ∈ (0, β∗A), such that I∗∗(β) ≡ I∗.

Define the value function

Π∗∗(βA) ≡ Π(βA, β
o
B(I∗∗(βA)), I∗∗(βA)).

The proof strategy entails showing that, if such a positive β exists, the principal

would benefit from setting βA > β, i.e., Π∗∗
′
(β) > 0.

Because the principal chooses βB optimally conditional on the non-contractible

investment I∗∗(βA), by the Envelope Theorem,

Π∗∗
′
(βA) =

∂Π(βA, β
o
B(I∗∗(βA)), I∗∗(βA))

∂βA
+
∂Π(βA, β

o
B(I∗∗(βA)), I)

∂I

∣∣∣∣
I=I∗∗(βA)

I∗∗
′
(βA). (29)

By definition, Π∗∗
′
(β∗∗A ) = 0. Applying our maintained assumption that f > 1 to

(28), yields a lower bound on I∗∗
′
(βA):

I∗∗
′
(βA) > −q

∗(µ, I∗∗(βA))

βA
.
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We then have:

Π∗∗
′
(β) =

(
q∗(µ, I∗)− F ′(I∗)− ρ

8
(β2 + (β∗B)2)

∂V ar(M(θ, I∗))

∂I

)
I∗∗
′
(β)

+Φ′A(β)− ρ

4
βV ar(M(θ, I∗)) (30)

= −ρ
8

(β2 − (β∗A)2)
∂V ar(·)
∂I

· I∗∗′(β) + Φ′A(β)− ρ

4
βV ar(·) (31)

>
ρ

8
(β2 − (β∗A)2)

∂V ar(·)
∂I

· q
∗(µ, I∗)

β
+ Φ′A(β)− ρ

4
βV ar(·) (32)

=
ρ

4

(
β − (β∗A)2

β

)
(q∗(µ, I∗))2S + Φ′A(β)− ρ

4
βV ar(·)

=
ρ

4

(
β − (β∗A)2

β

)
V ar(M(θ, I∗)) + Φ′A(β)− ρ

4
βV ar(·) (33)

= Φ′A(β)− ρ

4

(β∗A)2

β
V ar(M(θ, I∗))

> Φ′A(β)− ρ

4
β∗AV ar(M(θ, I∗)) (34)

= Φ′A(β)− Φ′A(β∗A) (35)

> 0. (36)

Here, (30) uses I∗∗(β) = I∗ and βoB(I∗∗(β)) = β∗B; (31) uses the first-order

condition for contractible investment in (22); (32) uses the above lower bound on

I∗∗
′
(βA); (33) uses (21); (34) uses β∗A > β; (35) uses the first-order condition for

contractible PPS, Φ′i(β
∗
i ) = ρ

4
β∗i V ar(M(θ, I∗)); and (36) uses Φ′i(0) > Φ′i(β

∗
i ) >

Φ′i(β
MH
i ) = 0 > Φ′i(1), Φ′′i (·) ≤ 0, and β < β∗A. It follows that β∗∗A > β, and,

hence, I∗∗ ≡ I∗∗(β∗∗A ) < I∗. Thus, β∗∗B ≡ βoB(I∗∗) > β∗B ≡ βoB(I∗), because

βoi (I), i = A,B, is a decreasing function.

Part (ii): By Lemma 4, if Condition (OI) holds, I∗∗(β∗A) > I∗ because β∗A ∈

[βminA , βMH
A ]. By Proposition 1, to dampen investment incentives, the principal

has to increase βA above the contractible benchmark. Because limβA→∞ I
∗∗(βA) =

0, by Proposition 1, there exists a unique β̄ > β∗A, such that I∗∗(β̄) = I∗. To

compare β̄ and β∗∗A , we need to sign Π∗∗
′
(β̄). The remainder of the proof mirrors
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the proof of Proposition 2(i), and hence is omitted.

Proof of Proposition 3: Comparing β∗∗A and β∗A requires signing Π∗∗
′
(β∗A). To

avoid clutter, let β̃B ≡ βoB(I∗∗(β∗A)). Using (29),

Π∗∗
′
(β∗A) =

∂Π(β∗A, β
o
B(I∗∗(β∗A)), I)

∂I

∣∣∣∣
I=I∗∗(β∗A)

· I∗∗′(β∗A) + Φ′A(β∗A)

−ρ
4
β∗AV ar(M(θ, I∗∗(β∗A))). (37)

We start by evaluating the first term in (37):

∂Π(·)
∂I

∣∣∣∣
I=I∗∗(β∗A)

= q∗(µ, I∗∗(β∗A))− fI∗∗(β∗A)− ρ

8
((β∗A)2 + β̃2

B)
∂V ar(M(θ, I∗∗(β∗A)))

∂I

=
q∗(µ, I∗∗(β∗A))

2
− ρ

8

(
(β∗A)2 + β̃2

B − β∗A
) ∂V ar(M(θ, I∗∗(β∗A)))

∂I
(38)

= −q
∗(µ, I∗∗(β∗A))

2

[
ρS

2

(
(β∗A)2 + β̃2

B − β∗A
)
− 1

]
(39)

where (38) uses (13) and (39) uses (21). Next, we evaluate the last two terms in

(37):

Φ′A(β∗A)− ρ

4
β∗AV ar(M(θ, I∗∗(β∗A))) =

ρ

4
β∗A · (∆V (β∗A)) (40)

=
ρS

4
β∗A
(
[q∗(µ, I∗]2 − [q∗(µ, I∗∗(β∗A)]2

)
, (41)

where (40) uses (18) and the first-order condition for the contractible PPS,

Φ′A(β∗A) = ρ
4
β∗AV ar(M(θ, I∗)); and (41) uses (21). Next, using (21) and q∗(µ, I) =

µ+ I, I∗ and I∗∗(β∗A) satisfy, respectively,

q∗(µ, I∗)− fI∗ − ρS

4

∑
i

(β∗i )
2q∗(µ, I∗) = 0 ⇐⇒ I∗ =

µ(1− ρS
4

∑
i(β
∗
i )

2)
ρS
4

∑
i(β
∗
i )

2 + f − 1
,

q∗(µ, I∗∗(β∗A))

2
− fI∗∗(β∗A)− ρS

4
β∗Aq

∗(µ, I∗∗(β∗)) = 0 ⇐⇒ I∗∗(β∗A) =
µ
2
(1− ρS

2
β∗A)

ρS
4
β∗A + f − 1

2

.

Hence,

q∗(µ, I∗) = µ+
µ(1− ρS

4

∑
i(β
∗
i )

2)
ρS
4

∑
i(β
∗
i )

2 + f − 1
(42)

q∗(µ, I∗∗(β∗A)) = µ+
µ
2
(1− ρS

2
β∗A)

ρS
4
β∗A + f − 1

2

. (43)
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Then, substituting (28), (39), (41), (42) and (43) into (37) and simplifying:

Π∗∗
′
(β∗A) =

ρS[q∗(µ, I∗∗(β∗A))]2

8(ρS
4
β∗A + f − 1

2
)

(
ρS

2
((β∗A)2 + β̃2

B − β∗A)− 1

)
+
ρS

4
β∗A
(
[q∗(µ, I∗)]2 − [q∗(µ, I∗∗(β∗A)]2

)
∝ ρS

2

[
(β∗A)2 + β̃2

B − β∗A
]
− 1 + 2β∗A

((
q∗(µ, I∗)

q∗(µ, I∗∗(β∗A))

)2

− 1

)(
ρS

4
β∗A + f − 1

2

)
=

ρS

2

[
(β∗A)2 + β̃2

B − β∗A
]
− 1

−
β∗A
(
ρS
2

(
∑

i(β
∗
i )

2 − β∗A)− 1
) (

ρS
4

(
∑

i(β
∗
i )

2 + β∗A) + 2f − 3
2

) (
ρS
4
β∗A + f − 1

2

)(
ρS
4

∑
i(β
∗
i )

2 + f − 1
)2 .

Using (23) and β∗i ∈ [βmini , βMH
i ], this term is proportional to:

K ≡ β∗A

(
ρS

4
(
∑
i

(β∗i )
2 + β∗A) + 2f − 3

2

)(
ρS

4
β∗A + f − 1

2

)
︸ ︷︷ ︸

≡H1

−

(
ρS

4

∑
i

(β∗i )
2 + f − 1

)2
 ρS

2

[
(β∗A)2 + β̃2

B − β∗A
]
− 1

ρS
2

(
∑

i(β
∗
i )

2 − β∗A)− 1


︸ ︷︷ ︸

≡H2

. (44)

A necessary and sufficient condition for β∗∗A < β∗A (respectively, β∗∗A > β∗A) is that

K < 0 (respectively, K > 0).

Part (i): We derive sufficient conditions for K < 0 ( so that β∗∗A < β∗A). First,(
3ρS

4
+ 2f − 3

2

) (
ρS
4

+ f − 1
2

)
> H1 > 0 because β∗i ∈ (0, 1). Second,

H2 >
ρS
2

[
(βminB )2 − 1

4

]
− 1

ρS
2

(βMH
B )2 − 1

=

ρS
2

[
1

(1+2ρvσ2
B)2
− 1

4

]
− 1

ρS
2(1+ρvσ2

B)2
− 1

≡ γ, (45)

because β∗B < βMH
B ; β̃B > βminB and β∗A(β∗A − 1) ∈ (−1

4
, 0). Third, γ > 0 because

ρS
2

[
(βminB )2 − 1

4

]
− 1 < ρS

2
(βMH

B )2 − 1 < 0 by (23). Fourth, β∗A < βMH
A . Hence,

K < βMH
A

(
3ρS

4
+ 2f − 3

2

)(
ρS

4
+ f − 1

2

)
− (f − 1)2 γ

≡ k1.
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Using the definition of βMH
i , k1 < 0 (and hence Π∗∗

′
(β∗A) < 0 and β∗∗A < β∗A) if

σ2
A > σ̂oo ≡

(
3ρS

4
+ 2f − 3

2

) (
ρS
4

+ f − 1
2

)
− (f − 1)2γ

ρv(f − 1)2γ
.

Note that σ̂oo > 0, because f > 1 and γ ∈ (0, 1).

Part (ii): We now derive sufficient conditions for K > 0 (so that β∗∗A > β∗A):

K > βminA

(
2f − 3

2

)(
f − 1

2

)
−

(
ρS

4

∑
i

(β∗i )
2 + f − 1

)2

(46)

> βminA

(
2f − 3

2

)(
f − 1

2

)
− f 2 (47)

≡ k2

where inequality (46) uses (a) H1 >
(
2f − 3

2

) (
f − 1

2

)
−
(
ρS
4

∑
i(β
∗
i )

2 + f − 1
)2
>

0; (b) βminA < β∗A; (c) H2 <
ρS
2

(
∑
i(β
∗
i )2−β∗A)−1

ρS
2

(
∑
i(β
∗
i )2−β∗A)−1

= 1 because β∗B < β̃B by β̃B ≡

βoB(I∗∗(β∗A)), Lemma 3 and (23); and (d) S < S. Inequality (47) uses the defi-

nition of S. Using the definition of βmini , k2 > 0 (and hence Π∗∗
′
(β∗A) > 0 and

β∗∗A > β∗A) if

σ2
A < σ̂o ≡

(
2f − 3

2

) (
f − 1

2

)
− f 2

2ρvf 2
.

This is feasible, i.e. σ̂o > 0, if f > f̂U = 1
4

(
5 +
√

13
)
≈ 2.15. Lastly, we note

that σ̂o < σ̂oo because k1 < K < k2 for any σ2
A.

Proof of Proposition 3′: The comparison of β∗∗A and β∗A follows similar steps

as the proof of Proposition 3. The only difference here is that, under (OI),

ρS
2

[β2
A + β2

B − βA]−1 > 0 for β ∈ [βminA , βMH
A ]×[βminB , βMH

B ] by (26) and therefore

we find that Π∗∗
′
(β∗A) ∝ −K, where K is as defined in (44).

Part (i): The proof of this part follows analogous steps as the ones in the proof

of Proposition 3(i). It is straightforward to see that −K > −k1 > 0 (and hence

Π∗∗
′
(β∗A) > 0 and β∗∗A > β∗A) if

σ2
A > σ̂oo ≡

(
3ρS

4
+ 2f − 3

2

) (
ρS
4

+ f − 1
2

)
− (f − 1)2γ

ρv(f − 1)2γ
,

44



where γ as defined in (45) is positive, because 0 < ρS
2

[
(βminB )2 − 1

4

]
− 1 <

ρS
2

(βMH
B )2 − 1 by (26).

Part (ii): The proof of this part follows analogous steps as the ones in the

proof of Proposition 3(ii). It is straightforward to see that −K < −k2 < 0 (and

hence Π∗∗
′
(β∗A) > 0 and β∗∗A > β∗A) if

σ2
A < σ̂o ≡

(
2f − 3

2

) (
f − 1

2

)
− f 2

2ρvf 2
.

This is feasible by (12) and Condition (OI), i.e., σ2
A,O < σ̂o, if f > f̂O =

25
322

(
125 +

√
14, 659

)
≈ 19.11. (Note that the lower bound on f , f > f̂O, is a suf-

ficient condition for β∗∗A > β∗A. It is not necessary, as illustrated by the numerical

example in Table 2.) Lastly, we note that σ̂o < σ̂oo because −k1 < −K < −k2

for any σ2
A.
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